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Generation and control of optical vortices using left-handed materials
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Optical vortices are shown to be generated in the near-field through interference between a propagating wave
and the amplified evanescent field in a slab of lossy left-handed material. While small loss adversely impacts
the sub-wavelength performance in the lens application, the vortex character shown relies on some degree of
imperfection. These vortices can be controlled by means of gain/loss and the incident field.
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Electromagnetic vortices have been shown to exist in a
variety of linear [1-5] and nonlinear media [6,7]. Vortices are
points or rings in space (in three dimensions) or points in a
plane (lines along the dimension with no field variation, in
two dimensions) of zero intensity (power density). Nomen-
clature such as dislocations and phase singularities have also
been used to describe this phenomenon. The feature of the
vortex is that the phase of the field increases or decreases by
an integer multiple of 277 on a closed path encompassing the
point or line [2].

Vortices have been found in simulations involving wave
packets [1], monochromatic ~Gaussian beams [2,5],
waveguides [3], and coupling through small apertures in a
metal film [4]. They have been observed as solitons in non-
linear Kerr media [6], and black self-guided beams in Kerr
media are an example [8]. They have also been seen in non-
linear semiconductor laser cavities, where they depend on
the operating conditions [7]. A possible generation mecha-
nism uses a phase mask which provides the 27 circumferen-
tial phase shift [9]. All of these vortex observations, with the
exception of the subwavelength slit in a metal [4], have in-
volved only propagating waves.

The advancing phase front around a vortex gives rise to
circulating power flow, described by the Poynting vector S or
momentum of the wave. This field can impart a force to a
particle, and can form an optical trap [9,10]. Such traps pro-
vide interesting opportunities for science and technology [9].
Vortices from a strong signal in a nonlinear Kerr medium can
provide a guiding mechanism for a weaker signal [6]. Vorti-
ces have also been suggested as a means to null out a bright,
coherent signal in order to achieve sensitivity to a low co-
herence background signal that could then be detected in the
vortex [11].

Writing the phase of either the electric or magnetic field
as ¢, the topological quantum number or charge for the
vortex i s=$Vep-dl/(2). Depending on the circulation,
s==+1. The sum of the topological number for all interactions
has been shown to be conserved, and that birth requires the
creation of two dislocations of opposite rotation [2,12].

We show that interference between propagating and eva-
nescent fields can give rise to vortices in the neighborhood of
a linear left-handed (LH) or negative refractive index slab. A
LH medium provides evanescent field growth and a means to
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achieve and control the vortices. The concept can be illus-
trated with a simple example. The superposition in free space
of a z-propagating transverse electromagnetic (TEM) wave
having electric field E=exp(ikyz)y, where k, is the free space
wave number, and a transverse electric (TE) evanescent field
with E=cos(kx)exp(—az)y, with k, the transverse phase
constant and « the decay constant, will result in a nonzero
curl of the Poynting vector S and vortices rotating about the
y direction. Generalizing, the superposition of propagating
and evanescent fields can result in vortices. As the evanes-
cent field is involved, such vortices would be generated in
the near-field.

Veselago recognized some of the interesting properties of
LH materials, one of which is negative refraction when a
beam is incident on an interface [13]. Pendry suggested that
a perfect lens or superlens could be achieved with a LH slab
[14], based on the negative refraction of propagating waves
and the amplification of decaying evanescent fields. Natu-
rally, this prospect aroused great interest because of the many
imaging applications which could benefit. With small con-
ductor elements forming electric and magnetic dipoles oper-
ated beyond resonance, so-called metamaterials, negative re-
fraction has been demonstrated in the microwave frequency
range [15]. There have been many subsequent studies, in-
cluding the use of photonic crystals to achieve negative re-
fraction under some circumstances without being in an effec-
tive medium limit [16,17].

As the frequency approaches zero, the dielectric constant
€ and relative permeability p must be positive in order to
have positive energy density. There must therefore be disper-
sion in these parameters with frequency. Given the real part,
the imaginary or loss term is then dictated by the Kramers-
Kronig relations, and vice versa [18]. These relations are
based on the causal relationship between the field and the
material dipole moment that it creates. With a simple dipole
resonance model, negative € and u are achieved by operating
at frequencies higher than the resonance. Hence, negative
index materials must have some degree of loss, with funda-
mental implications on the decaying fields [19]. Any degree
of loss will limit the amplified evanescent plane wave spec-
trum [19-22]. Also, mismatch in the lens material will ad-
versely impact performance [23]. The use of gain has been
proposed to compensate for the loss [22,24].

The ability of a LH slab to amplify evanescent fields leads
us to propose its use as a means to generate near-field optical
vortices. We use the LH slab geometry with thickness d in
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FIG. 1. Schematic of a left-handed (LH) slab lens showing the
variables. The slab (shaded region) extends from z, to zyp+d. The
object plane is z=0 and the image plane is z=z;.

free space, as in Fig. 1. The object plane is z=0, the front
surface of the slab is at z=z,, and the image plane is at z
=z;. A perfect lens has u=e=-1, and the image plane occurs
at z;=2d. Consider the case of a low loss LH slab with €
=-1+i€' and u=-1, and a TM (H,,E,,E.) evanescent field
incident at z=0 with z dependence exp(-az), where «
=\/k)2c—k%, with ky=2m/N and N the wavelength. The exact
plane wave field transfer function is

(1= r)exp(ik.d)

= ik.d), 1
Ti-2 exp(i2k.d) explikd) (v

where k, (sz) denotes the z component of the wave vector in
the RH (LH) medium and r is the reflection coefficient of the
field incident onto the (semi-infinite) LH medium from the
RH medium at z=z,. For (ko/ a)?€’ <1, the transfer function
7(z=2d) for the evanescent fields, from Eq. (1), can be ap-
proximated as [22]

m(z=2d) = L, (2)

1+¢

where {=exp(—2ad)/A?, with A=(2+(ky/@)?)€"/4. For the
lossless case, {— % and 7(z=2d)=1 for all evanescent fields,
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FIG. 2. Poynting vector for TM field incidence on a d=N LH
slab (zp=0.5\, €'=107%): (a) S; (b) S,
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FIG. 3. Poynting vector for a TM incidence on a d=N LH slab
(z0=0.5\, €'=107): (a) S,; (b) S,.

which allows the full reconstruction of the object at the im-
age plane. The impact of small €’ on the propagating fields is
minor, whereas on the contrary, the evanescent spectrum can
be severely impacted. This results in a truncated (or imper-
fect) plane wave transfer function. The band-limited evanes-
cent spectrum can be amplified, and together with the propa-
gating field, vortices can be formed.

Consider Fig. 1 as a lossy LH slab with e=—1+i€” and
p=—1. The fields in the object plane (z=0) can be expanded
into a summation of plane wave components along the
space-invariant transverse x direction. Since the behavior of
each plane wave component in the geometry shown in Fig. 1
can be derived analytically, the corresponding electric field
and magnetic field can be found. It is then sufficient to evalu-
ate the time average Poynting vector, S(x,z)=(1/2)Re{E
X H'}=S,(x,z)%+5.(x,2)Z, everywhere in Fig. 1, in order to
investigate the vortex issue. We assume a TM field with

" 0 1 |x| <0.IX 3

nz=0)= 0 otherwise ®)
and then calculate S everywhere for different values of €’ in
the LH slab. Figure 2 shows S(x,z) for a LH slab having
€'=1073 and located between z=0.5\ and z=1.5\. The vor-
tices can be observed as follows. At z=1.5\, Fig. 2(a) shows
negative S, (power flowing backward) around x=0 and posi-
tive S, (power flow forward) in the areas above and below.
Figure 2(b) shows oppositely directed S, on either side of the
z=1.5\ interface. While not visible on the scale in Fig. 2,
vortices also occur at the image plane and elsewhere, with
reducing amplitude as z/\ increases beyond the back surface
of the slab. The image plane vortices disappear when the loss
goes to zero. Notice also that the two vortices on the output
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FIG. 4. The curl of the Poynting vector along the output surface
of the slab (z=z¢+d) for the cases of Figs. 2 and 3.

face of the slab have opposite rotation, i.e., s=1 in one case
and s=—1 in the other, consistent with the notion of creating
vortices of opposite rotation [2,12]. Figure 3 shows the
Poynting vector with the same geometry and incident field as
for Fig. 2, but with €'=1072, i.e., with less loss. The sizes of
the vortices are reduced, using, for example, a 3 dB measure.
In this case, the increased bandwidth for 7 provides for more
rapid field variation and hence smaller vortex size. Figure 4
gives the curl of the Poynting vector at z=z,+d for the cases
of Figs. 2 and 3 and shows changes in sign that confirm the
presence of vortices.

Figure 5 shows S, for a d=\ slab with zo=0.5\ for three
loss cases (€’=1073,10"*,107). The variation of S, as a
function of x becomes faster and the intensity larger as the
loss decreases. The region where S, is negative can be con-
sidered as a dark background, because an ideal detector
which does not disturb the fields will not absorb photons in
this region. This suggests that it would be possible to detect
a weak signal located within the dark areas [11], or to deter-
mine the incoherent background noise from a measurement
in these regions.

The results of Fig. 5 suggest that modifying the loss is a
way to control the size and strength of a vortex. While this
may occur by changing wavelength, due to dispersion, we
describe an approach at fixed wavelength. Optical gain can
be used to offset loss [22,24], and hence to control the vor-
tices, even to turn them on and off. From Eq. (2), as 7is a
function of €', it suggests that for small values of |€’| (either
loss or gain), the spectrum of the amplified evanescent field
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FIG. 5. The z component of the Poynting vector (S,) at
z=1.5\ for different loss of the LH slab €’=10%,1074,1075.

will be approximately the same, under the assumption that
(ky/ @)*€" < 1. Suppose the LH slab can be realized with a
gain material. The injected (pump) energy can then be used
to either reduce the material loss or to reach net gain, in
order to control the vortices.

The vortices we have shown for planar negative index
slabs depend on loss and the incident field, and hence can be
controlled by either varying the incident field or introducing
gain. They occur with an incident field containing propagat-
ing and evanescent components. While loss in a LH lens
restricts operation to the near-field, it also provides applica-
tion opportunities through the generation of vortices. Control
of loss, through gain, for example, allows control over the
size and strength of the vortex. There is no fundamental re-
striction on the minimum vortex size, as the evanescent spec-
trum is involved, i.e., there is no restriction that they be
limited by, or comparable to, the wavelength. The concept
may thus be important in the nanophotonics field. Implemen-
tation would require use of metamaterials in an effective me-
dium limit to achieve a negative refractive index [14,15].

Support came from the National Science Foundation
(0203240-ECS and 0323037-ECS), the Army Research Of-
fice (DAAD 19-00-1-0387), and the Department of Energy
Office of Nonproliferation and Research and Engineering
(NA22), in conjunction with Lawrence Livermore National
Laboratory.

[1]J. E. Nye and M. V. Berry, Proc. R. Soc. London, Ser. A 336,
165 (1974).

[2] M. V. Berry, J. Mod. Opt. 45, 1845 (1998).

[3] R. M. Jenkins, J. Banerji, and A. R. Davis, J. Opt. A, Pure
Appl. Opt. 3, 527 (2001).

[4] H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, Phys.
Rev. E 67, 036608 (2003).

[5] M. V. Berry, J. Opt. A, Pure Appl. Opt. 6, 259 (2004).

[6] G. A. Swartzlander and C. T. Law, Phys. Rev. Lett. 69, 2503
(1992).

[7]J. Scheuer and M. Orenstein, Science 285, 230 (1999).

[8] A. W. Snyder, L. Poladian, and D. J. Mitchell, Opt. Lett. 17,
789 (1992).
[9]J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901
(2003).
[10] K. T. Gahagan and G. A. Swartzlander, J. Opt. Soc. Am. B 16,
553 (1999).
[11] G. A. Swartzlander, Opt. Lett. 26, 497 (2001).
[12] J. F. Nye, J. Opt. A, Pure Appl. Opt. 5, 495 (2003).
[13] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[14]J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[15] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77

016601-3



KEVIN J. WEBB AND MING-CHUAN YANG

(2001).

[16] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry,
Phys. Rev. B 65, 201104(R) (2002).

[17] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry,
Opt. Express 11, 746 (2003).

[18] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[19] K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys.
Rev. E 70, 035602(R) (2004).

PHYSICAL REVIEW E 74, 016601 (2006)

[20] M. Nieto-Vesperinas, J. Opt. Soc. Am. A 21, 491 (2004).

[21] V. A. Podolskiy and E. E. Narimanov, Opt. Lett. 30, 75
(2005).

[22] M. Yang and K. J. Webb, Opt. Lett. 30, 2382 (2005).

[23] D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A.
Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1056
(2003).

[24] S. A. Ramakrishna and J. B. Pendry, Phys. Rev. B 67,
201101(R) (2003).

016601-4



